Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Physiol Genomics ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557280

RESUMO

Low-density lipoprotein cholesterol (LDL-c) is both a therapeutic target and a risk factor for cardiovascular disease (CVD). MicroRNA (miRNA) have been shown to regulate cholesterol homeostasis, and miRNA in blood circulation have been linked to hypercholesterolemia. However, few studies to date have associated miRNA with phenotypes like LDL-c in a healthy population. To this end, we analyzed circulating miRNA in relation to LDL-c in a healthy cohort of 353 participants using two separate bioinformatic approaches. The first approach found that miR-15b-5p and miR-16-5p were upregulated in individuals with at-risk levels of LDL-c. The second approach identified two miRNA clusters, one that positively and a second that negatively, correlated with LDL-c. Included in the cluster that positively correlated with LDL-c were miR-15b-5p and miR-16-5p as well as other miRNA from the miR-15/107, miR-30, and let-7 families. Cross-species analyses suggested that several miRNA that associated with LDL-c are conserved between mice and humans. Finally, we examined the influence of diet on circulating miRNA. Our results robustly linked circulating miRNA with LDL-c suggesting that miRNA could be used as biomarkers for hypercholesterolemia or targets for developing cholesterol-lowering drugs.

2.
J Nutr ; 154(4): 1449-1460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432562

RESUMO

BACKGROUND: Higher diet quality has been associated with lower risk of developing inflammatory bowel disease, but associations between diet and gastrointestinal (GI) inflammation in healthy adults prior to disease onset are understudied. OBJECTIVES: The purpose of this project was to examine associations between reported dietary intake and markers of GI inflammation in a healthy adult human cohort. METHODS: In a cross-sectional observational trial of 358 healthy adults, participants completed ≤3 unannounced 24-h dietary recalls using the Automated Self-Administered Dietary Assessment Tool and a Block 2014 Food Frequency Questionnaire to assess recent and habitual intake, respectively. Those who provided a stool sample were included in this analysis. Inflammation markers from stool, including calprotectin, neopterin, and myeloperoxidase, were measured by ELISA along with LPS-binding protein from plasma. RESULTS: Recent and habitual fiber intake was negatively correlated with fecal calprotectin concentrations (n = 295, P = 0.011, 0.009). Habitual soluble fiber intake was also negatively correlated with calprotectin (P = 0.01). Recent and habitual legume and vegetable intake was negatively correlated with calprotectin (P = 0.013, 0.026, 0.01, 0.009). We observed an inverse correlation between recent Healthy Eating Index (HEI) scores and calprotectin concentrations (n = 295, P = 0.026). Dietary Inflammatory Index scores were calculated and positively correlated with neopterin for recent intake (n = 289, P = 0.015). When participants with clinically elevated calprotectin were excluded, recent and habitual fiber, legume, vegetable, and fruit intake were negatively correlated with calprotectin (n = 253, P = 0.00001, 0.0002, 0.045, 0.001, 0.009, 0.001, 0.004, 0.014). Recent total HEI score was inversely correlated with subclinical calprotectin (P = 0.003). CONCLUSIONS: Higher diet quality may be protective against GI inflammation even in healthy adults. This trial was registered at clinicaltrials.gov as NCT02367287.


Assuntos
Dieta , Frutas , Adulto , Humanos , Estados Unidos , Estudos Transversais , Neopterina , Verduras , Inflamação , Complexo Antígeno L1 Leucocitário
3.
Nat Microbiol ; 9(3): 727-736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374245

RESUMO

In sub-Saharan Africa, multidrug-resistant non-typhoidal Salmonella serovars are a common cause of fatal bloodstream infection. Malnutrition is a predisposing factor, but the underlying mechanisms are unknown. Here we show that vitamin A deficiency, one of the most prevalent micronutrient deficits afflicting African children, increases susceptibility to disseminated non-typhoidal Salmonella disease in mice and impairs terminal neutrophil maturation. Immature neutrophils had reduced expression of Slc11a1, a gene that encodes a metal ion transporter generally thought to restrict pathogen growth in macrophages. Adoptive transfer of SLC11A1-proficient neutrophils, but not SLC11A1-deficient neutrophils, reduced systemic Salmonella burden in Slc11a1-/- mice or mice with vitamin A deficiency. Loss of terminal granulopoiesis regulator CCAAT/enhancer-binding protein ϵ (C/EBPϵ) also decreased neutrophil-mediated control of Salmonella, but not that mediated by peritoneal macrophages. Susceptibility to infection increased in Cebpe-/- Slc11a1+/+ mice compared with wild-type controls, in an Slc11a1-expression-dependent manner. These data suggest that SLC11A1 deficiency impairs Salmonella control in part by blunting neutrophil-mediated defence.


Assuntos
Salmonelose Animal , Deficiência de Vitamina A , Criança , Camundongos , Humanos , Animais , Neutrófilos , Salmonella , Macrófagos
4.
Microbiol Spectr ; 11(6): e0102723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819145

RESUMO

IMPORTANCE: Chronic inflammation may develop over time in healthy adults as a result of a variety of factors, such as poor diet directly affecting the composition of the intestinal microbiome, or by causing obesity, which may also affect the intestinal microbiome. These effects may trigger the activation of an immune response that could eventually lead to an inflammation-related disease, such as colon cancer. Before disease develops it may be possible to identify subclinical inflammation or immune activation attributable to specific intestinal bacteria normally found in the gut that could result in future adverse health impacts. In the present study, we examined a group of healthy men and women across a wide age range with and without obesity to determine which bacteria were associated with particular types of immune activation to identify potential preclinical markers of inflammatory disease risk. Several associations were found that may help develop dietary interventions to lower disease risk.


Assuntos
Bactérias , Inflamação , Masculino , Humanos , Feminino , Nível de Saúde , Obesidade
5.
Nutrients ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630694

RESUMO

Dairy products are a good source of essential nutrients and past reviews have shown associations of dairy consumption with decreased systemic inflammation. Links between dairy intake and gastrointestinal (GI) inflammation are under-investigated. Therefore, we examined associations between reported dairy intake and markers of GI inflammation in healthy adults in a cross-sectional observational study, hypothesizing a negative association with yogurt intake, suggesting a protective effect, and no associations with total dairy, fluid milk, and cheese intake. Participants completed 24-h dietary recalls and a food frequency questionnaire (FFQ) to assess recent and habitual intake, respectively. Those who also provided a stool sample (n = 295), and plasma sample (n = 348) were included in analysis. Inflammation markers from stool, including calprotectin, neopterin, and myeloperoxidase, were measured along with LPS-binding protein (LBP) from plasma. Regression models tested associations between dairy intake variables and inflammation markers with covariates: age, sex, and body mass index (BMI). As yogurt is episodically consumed, we examined differences in inflammation levels between consumers (>0 cup equivalents/day reported in recalls) and non-consumers. We found no significant associations between dairy intake and markers of GI inflammation. In this cohort of healthy adults, dairy intake was not associated with GI inflammation.


Assuntos
Inflamação , Complexo Antígeno L1 Leucocitário , Humanos , Adulto , Estudos Transversais , Índice de Massa Corporal , Fezes
6.
Immun Ageing ; 20(1): 29, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353855

RESUMO

BACKGROUND: Progressive age-associated change in frequencies and functional capacities of immune cells is known as immunosenescence. Despite data linking chronic environmental, physiological, and psychosocial stressors with accelerated aging, how stress contributes to immunosenesence is not well characterized. OBJECTIVE: To help delineate the contribution of cumulative physiological stress on immunosensence we assessed relationships between a composite measurement of cumulative physiological stress, reflecting the functioning of the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, cardiovascular system, and metabolic processes, and lymphocyte changes typically affiliated with aging in a cohort of healthy volunteers ranging from 18 to 66 y. RESULTS: Physiological stress load positively correlated with subject age in the study cohort and was significantly higher in adults 50-66 y compared to adults 18-33 y and 34-49 y. Using physiological stress load, we identified a significant age-dependent association between stress load and frequencies of circulating regulatory T lymphocytes (Tregs). Frequencies were higher in younger participants, but only in participants exhibiting low physiological stress load. As stress load increased, frequencies of Tregs decreased in young participants but were unchanged with increasing stress load in middle and older age individuals. Follow-up analysis of stress load components indicated lower circulating DHEA-S and higher urinary norepinephrine as the primary contributors to the effects of total stress load on Tregs. In addition, we identified age-independent inverse associations between stress load and frequencies of naïve Tregs and naïve CD4 T cells and positive associations between stress load and frequencies of memory Tregs and memory CD4 T cells. These associations were primarily driven by stress load components waist circumference, systolic and diastolic blood pressure, CRP, and HbA1c. In summary, our study results suggest that, in younger people, physiological stress load may diminish regulatory T cell frequencies to levels seen in older persons. Furthermore, independent of age, stress load may contribute to contraction of the naïve Treg pool and accumulation of memory Treg cells. CLINICAL TRIAL: Registered on ClincialTrials.gov (Identifier: NCT02367287).

7.
J Nutr ; 153(8): 2163-2173, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354976

RESUMO

BACKGROUND: Lactase persistence (LP) is a heritable trait in which lactose can be digested throughout adulthood. Lactase nonpersistent (LNP) individuals who consume lactose may experience microbial adaptations in response to undigested lactose. OBJECTIVES: The objective of the study was to estimate lactose from foods reported in the Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) and determine the interaction between lactose consumption, LP genotype, and gut microbiome in an observational cross-sectional study of healthy adults in the United States (US). METHODS: Average daily lactose consumption was estimated for 279 healthy US adults, genotyped for the lactase gene -13910G>A polymorphism (rs4988235) by matching ASA24-reported foods to foods in the Nutrition Coordinating Center Food and Nutrient Database. Analysis of covariance was used to identify whether the A genotype (LP) influenced lactose and total dairy consumption, with total energy intake and weight as covariates. The 16S rRNA V4/V5 region, amplified from bacterial DNA extracted from each frozen stool sample, was sequenced using Illumina MiSeq (300 bp paired-end) and analyzed using Quantitative Insights Into Microbial Ecology (QIIME)2 (version 2019.10). Differential abundances of bacterial taxa were analyzed using DESeq2 likelihood ratio tests. RESULTS: Across a diverse set of ethnicities, LP subjects consumed more lactose than LNP subjects. Lactobacillaceae abundance was highest in LNP subjects who consumed more than 12.46 g/d (upper tercile). Within Caucasians and Hispanics, family Lachnospiraceae was significantly enriched in the gut microbiota of LNP individuals consuming the upper tercile of lactose across both sexes. CONCLUSIONS: Elevated lactose consumption in individuals with the LNP genotype is associated with increased abundance of family Lactobacillaceae and Lachnospriaceae, taxa that contain multiple genera capable of utilizing lactose. This trial was registered on clinicaltrials.gov as NCT02367287.


Assuntos
Microbioma Gastrointestinal , Intolerância à Lactose , Masculino , Feminino , Humanos , Adulto , Estados Unidos , Lactose , Intolerância à Lactose/genética , Microbioma Gastrointestinal/genética , Estudos Transversais , RNA Ribossômico 16S/genética , Laticínios , Lactase/genética , Genótipo
8.
J Nutr ; 153(1): 106-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913444

RESUMO

BACKGROUND: Current assessment of dietary carbohydrates does not adequately reflect the nutritional properties and effects on gut microbial structure and function. Deeper characterization of food carbohydrate composition can serve to strengthen the link between diet and gastrointestinal health outcomes. OBJECTIVES: The present study aims to characterize the monosaccharide composition of diets in a healthy US adult cohort and use these features to assess the relationship between monosaccharide intake, diet quality, characteristics of the gut microbiota, and gastrointestinal inflammation. METHODS: This observational, cross-sectional study enrolled males and females across age (18-33 y, 34-49 y, and 50-65 y) and body mass index (normal, 18.5-24.99 kg/m2; overweight, 25-29.99 kg/m2; and obese, 30-44 kg/m2) categories. Recent dietary intake was assessed by the automated self-administered 24-h dietary recall system, and gut microbiota were assessed with shotgun metagenome sequencing. Dietary recalls were mapped to the Davis Food Glycopedia to estimate monosaccharide intake. Participants with >75% of carbohydrate intake mappable to the glycopedia were included (N = 180). RESULTS: Diversity of monosaccharide intake was positively associated with the total Healthy Eating Index score (Pearson's r = 0.520, P = 1.2 × 10-13) and negatively associated with fecal neopterin (Pearson's r = -0.247, P = 3.0 × 10-3). Comparing high with low intake of specific monosaccharides revealed differentially abundant taxa (Wald test, P < 0.05), which was associated with the functional capacity to break down these monomers (Wilcoxon rank-sum test, P < 0.05). CONCLUSIONS: Monosaccharide intake was associated with diet quality, gut microbial diversity, microbial metabolism, and gastrointestinal inflammation in healthy adults. As specific food sources were rich in particular monosaccharides, it may be possible in the future to tailor diets to fine-tune the gut microbiota and gastrointestinal function. This trial is registered at www. CLINICALTRIALS: gov as NCT02367287.


Assuntos
Microbioma Gastrointestinal , Masculino , Feminino , Adulto , Humanos , Monossacarídeos , Estudos Transversais , Fibras na Dieta , Ingestão de Alimentos , Dieta , Fezes/química , Inflamação
9.
J Trace Elem Med Biol ; 77: 127142, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36827808

RESUMO

BACKGROUND: The common C-allele of rs13266634 (c.973C>T or p.Arg325Trp) in SLC30A8 (ZNT8) is associated with increased risk of type 2 diabetes. While previous studies have examined the correlation of the variant with insulin and glucose metabolism, the effects of this variant on insulin and lipid responses after a lipid challenge in humans remain elusive. The goal of this study was to determine whether the C-allele had an impact on an individual's risk to metabolic syndromes in U.S. adults. METHOD: We studied the genotypes of rs13266634 in 349 individuals aged between 18 and 65 y with BMI ranging from 18.5 to 45 kg/m2. The subjects were evaluated for insulin, glucose, HbA1c, ghrelin, and lipid profiles before and after a high-fat mixed macronutrient tolerance test (MMTT). RESULTS: We found that the effects of variants rs13266634 on glucose and lipid metabolism were sex-dimorphic, greater impact on males than on females. Insulin incremental area under the curve (AUC) after MMTT was significantly decreased in men with the CC genotype (p < 0.05). Men with the CC genotype also had the lowest fasting non-esterified fatty acid (NEFA) concentrations. On the other hand, the TT genotype was associated with a slower triglyceride removal from the circulation in men after MMTT. The reduced triglyceride removal was also observed in subjects with BMI ≥ 30 carrying either the heterozygous or homozygous T-allele. Nevertheless, the SNP had little effect on fasting or postprandial blood glucose and cholesterol concentrations. CONCLUSION: We conclude that the CC genotype negatively affects insulin response after MMTT while the T-allele may negatively influence lipolysis during fasting and postprandial blood triglyceride removal in men and obese subjects, a novel finding in this study.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 2 , Masculino , Feminino , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Transportador 8 de Zinco , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Genótipo , Glucose/metabolismo , Glicemia , Triglicerídeos
10.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768394

RESUMO

Plasma trimethylamine n-oxide (TMAO) concentration increases in responses to feeding TMAO, choline, phosphatidylcholine, L-carnitine, and betaine but it is unknown whether concentrations change following a mixed macronutrient tolerance test (MMTT) with limited amounts of TMAO precursors. In this proof-of-concept study, we provided healthy female and male adults (n = 97) ranging in age (18-65 years) and BMI (18-44 kg/m2) a MMTT (60% fat, 25% sucrose; 42% of a standard 2000 kilo calorie diet) and recorded their metabolic response at fasting and at 30 min, 3 h, and 6 h postprandially. We quantified total exposure to TMAO (AUC-TMAO) and classified individuals by the blood draw at which they experienced their maximal TMAO concentration (TMAO-response groups). We related AUC-TMAO to the 16S rRNA microbiome, to two SNPs in the exons of the FMO3 gene (rs2266782, G>A, p.Glu158Lys; and rs2266780, A>G, p.Glu308Gly), and to a priori plasma metabolites. We observed varying TMAO responses (timing and magnitude) and identified a sex by age interaction such that AUC-TMAO increased with age in females but not in males (p-value = 0.0112). Few relationships between AUC-TMAO and the fecal microbiome and FMO3 genotype were identified. We observed a strong correlation between AUC-TMAO and TNF-α that depended on TMAO-response group. These findings promote precision nutrition and have important ramifications for the eating behavior of adults who could benefit from reducing TMAO exposure, and for understanding factors that generate plasma TMAO.


Assuntos
Betaína , Colina , Humanos , Masculino , Adulto , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , RNA Ribossômico 16S , Colina/metabolismo , Metilaminas/metabolismo , Nutrientes
11.
BMC Nutr ; 8(1): 157, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575541

RESUMO

OBJECTIVE: To evaluate the effect of a diet pattern based on Dietary Guidelines for Americans (DGA), in a controlled feeding setting, on plasma markers of inflammation and on cytokine production by peripheral blood mononuclear cells (PBMC). DESIGN: Women (n = 44) with one or more risk factors of metabolic syndrome (and BMI: 25.2-39.8 kg/m2) completed an 8-wk controlled feeding study. They were randomized to either a group following a diet based on DGA 2010 (DGA), or a group given a 'typical American diet' (TAD), based largely on a Western diet pattern. By design, women maintained their body weight. Fasting plasma and PBMC were collected at wk. 0 (baseline) and at wk. 8 (post-intervention). Sixteen plasma markers of inflammation and eight PBMC cytokines were measured at both time points, to evaluate if the diet had a significant effect on concentrations of these inflammatory markers. Data were analyzed using ANCOVA, followed by multiple-comparison adjustment using Benjamini-Hochberg method. RESULTS: Significant changes observed in Serum Amyloid A (SAA) and Matrix Metalloproteinase 3 (MMP3) in plasma did not retain significance upon multiple comparison adjustment. SAA: p = 0.044, adj p = 0.450; DGA mean change [95% CI] = - 12.6[- 32.3 to 7.04]; TAD mean change [95% CI] = - 2.24 [- 9.99 to 5.51]. MMP3: p = 0.014, adj p = 0.35; DGA mean change [95% CI] = 2.72[- 4.16 to 9.59]; TAD mean change [95% CI] = - 0.98[- 16.7 to 14.7]). Other inflammation markers were not differently altered by DGA relative to TAD. Effect size of change (Cohens d) indicated a large/medium-large effect of intervention on MMP3 and CRP, and medium effect on IL-6. CONCLUSIONS: No statistically significant changes were observed in the immune markers examined in this study. The biological roles and magnitude of the non-significant differences seen with two variables, CRP and MMP3, suggest that they be examined in future studies. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02298725.

12.
Front Immunol ; 13: 917966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248784

RESUMO

Background: Tryptophan (Trp) metabolites from intestinal bacteria (indole, indole acetic acid [IAA] and indole propionic acid [IPA]), and the Trp metabolite kynurenine (Kyn) from the indoleamine 2,3-dioxygenase (IDO) pathway, are aryl hydrocarbon receptor (AhR) agonists and thus, can regulate immune activity via the AhR pathway. We hypothesized that plasma concentrations of these metabolites would be associated with markers of immune activation in a cohort of healthy adults in a manner consistent with AhR-mediated immune-regulation. We also hypothesized that the plasma Kyn/Trp ratio, a marker of IDO activity, would be associated with immune markers reflecting IDO activation in innate immune cells. Finally, we hypothesized that some intestinal bacteria would be associated with plasma indole, IPA and IAA, and that these bacteria themselves would be associated with immune markers. Methods: A novel set of 88 immune markers, and plasma Trp metabolites, were measured in 362 healthy adults. Bacterial taxa from stool were identified by 16S rRNA gene analysis. Multiple linear regression analysis was used to identify significant associations with immune markers. Results: The sum of indole and IAA was positively associated with natural killer T-cells levels. Kyn and Kyn/Trp were positively associated with neopterin and IP-10, markers of type 1 immunity, and TNF-α and C-reactive protein (CRP), markers of the acute phase response, and the regulatory cytokine IL-10. Three bacteria negatively associated with Trp metabolites were associated with markers of immune activation: the family Lachnospiraceae with higher lymphocyte counts but lower level of activated CD4 T-cells, the genus Dorea with higher production of IFN-γ by T-cells in PBMC cultures, and the genus Ruminococcus with higher production IL-6 in PBMC cultures stimulated with bacterial lipopolysaccharide (LPS). Conclusions: In this cohort of healthy adults bacterial Trp metabolites were not strongly associated with immune markers. Conversely, the Kyn/Trp ratio was strongly associated with markers of systemic inflammation and the acute phase response, consistent with IDO activation in innate immune cells. Finally, commensal bacteria associated with lower plasma (and perhaps intestinal) levels of bacterial Trp metabolites were associated with greater immune activation, possibly reflecting decreased regulatory immune activity related to lower intestinal levels of bacterial indole metabolites.


Assuntos
Cinurenina , Triptofano , Reação de Fase Aguda/metabolismo , Adulto , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indóis , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cinurenina/metabolismo , Leucócitos Mononucleares , Lipopolissacarídeos/metabolismo , Neopterina , RNA Ribossômico 16S , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Adv Nutr ; 13(5): S1-S26, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183242

RESUMO

The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.


Assuntos
Doenças Transmissíveis , Microbioma Gastrointestinal , Imunossenescência , Infecções Respiratórias , Selênio , Idoso , Humanos , Inflamação , Micronutrientes/metabolismo , Vitaminas , Zinco
14.
Sci Rep ; 12(1): 16084, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167891

RESUMO

Zinc deficiency impairs the antibody-mediated immune response and is common in children from lower-income countries. This study aimed to investigate the impact of different zinc supplementation regimens (7, 10 or 20 mg/day elemental zinc)-therapeutic dispersible zinc tablets (TZ), daily multiple micronutrient powder (MNP), daily preventive zinc tablets (PZ) and placebo powder (control)-and compare between baseline and endline antibody production against pathogenic Escherichia coli in Laotian children (aged 6-23 months). Fifty representative plasma samples of each treatment group were randomly selected from 512 children to determine anti-E. coli IgG antibody levels and avidity. Of the 200 children, 78.5% had zinc deficiency (plasma zinc concentration < 65 µg/dL) and 40% had anaemia before receiving zinc supplementation. aAfter receiving the TZ, MNP or PZ regimen, the plasma anti-E. coli IgG levels were significantly increased compared with baseline; the effect on the antibody level was more pronounced in children with zinc deficiency. Interestingly, there was increased anti-E. coli IgG avidity in the control and PZ groups. This study suggests that PZ might be the optimal zinc supplementation regimen to increase both the quantity and quality of antibody responses in children with zinc deficiency. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02428647 (NCT02428647, 29/04/2015).


Assuntos
Formação de Anticorpos , Zinco , Criança , Suplementos Nutricionais , Escherichia coli , Humanos , Imunoglobulina G , Lactente , Micronutrientes , Pós
15.
Immun Ageing ; 19(1): 41, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104734

RESUMO

BACKGROUND: Monocytes are a heterogenous population of immune cells whose subsets and functions become substantially dysregulated with advanced age. Although much of our current understanding of the age-related changes in monocytes is derived from fasting blood samples, most people are predominately in the postprandial state during waking hours. As hormonal, metabolic, and immunological changes in response to the consumption of a meal are manifested in postprandial blood, it's unclear how age-dependent changes in peripheral monocytes at fasting are impacted by a dietary challenge. OBJECTIVE: We investigated the impact of age and meal consumption on circulating monocyte frequencies and subsets defined as classical (CD14 + CD16-), intermediate (CD14 + CD16 +), or non-classical (CD14dim CD16 +) in a cohort of 349 healthy adult volunteers grouped into categories based on their age: young adults (18-33 y, n = 123), middle adults (34-49 y, n = 115), and older adults (50-66 y, n = 111). RESULTS: Following 12-h fast total monocyte counts inversely correlated with subject age. Older adults had significantly fewer circulating monocytes along with elevated levels of TGs, cholesterol, glucose, IL-6, IL-8, TNF, neopterin, and CCL2 compared with young adults. Circulating monocyte pools in older adults consisted of smaller proportions of classical but larger proportions of intermediate and non-classical monocytes. Proportions of classical monocytes were inversely correlated with plasma TNF, IL-8, and neopterin while intermediate monocytes were positively correlated with plasma IL-6, TNF, and neopterin. Three hours after consuming a fat-containing meal postprandial monocyte counts increased in all age groups. Despite age-dependent differences in monocyte subsets at fasting, consumption of a meal induced similar changes in the proportions of classical and non-classical monocytes across age groups. Within the circulating postprandial monocyte pool, percentages of classical monocytes decreased while non-classical monocytes increased. However no change in precursory intermediate monocytes were detected. Our study confirms that ageing is associated with changes in monocyte frequencies and subsets and shows that consuming a fat-containing meal induces temporal changes in monocyte frequency and subsets independently of subject age. CLINICAL TRIAL: Registered on ClincialTrials.gov (Identifier: NCT02367287).

16.
BMC Nutr ; 8(1): 95, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050800

RESUMO

BACKGROUND: The effect of genetic polymorphisms on fasting blood lipid levels have been widely studied but the effects of these within the context of a high-fat meal challenge remain less characterized. The current study aimed to investigate the association of SNPs in lipoprotein-related genes with blood lipid profiles in healthy adults in the U.S. METHODS: Subjects (n = 393) between 18-66 years of age with BMIs ranging from 18.5-45 kg/m2 were enrolled the cross-sectional Nutritional Phenotyping Study. Among them, 349 subjects (men: 48%; women: 52%) gave consent for genotyping. SNPs in APOA5, APOB, APOC3, APOE, and LDLR were assessed. The association between lipid markers and genotypes was tested separately for each SNP with analysis of variance (ANOVA), adjusted for sex, age, and BMI. We also examined two-factor interactions between SNPs and sex, age, or BMI. RESULTS: Women carrying the C allele of rs3135506 in APOA5 or men carrying the C allele of rs429358 in APOE had reduced HDL-cholesterol levels during fasting and postprandially. The C allele in APOE was also correlated to increased LDL-C levels. The TT genotype of rs2854116 in APOC3 was associated with elevated total cholesterol. Additive effect of the risk alleles of APOA5 and APOE or APOC3 and APOE was detected. Nevertheless, the tested SNPs had little impact on the postprandial triglyceride responses to the high-fat challenge meal. We found no significant effects of SNPs in APOB (rs1042034) or LDLR (rs2228671) on triglycerides, cholesterol, or free fatty acid levels. CONCLUSIONS: In healthy adults, fasting and postprandial cholesterol levels are strongly correlated with the tested APOA5, APOE, and APOC3 genotypes. Sex contributes to the genetic impact of the tested SNPs on lipid profiles. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02367287. Registered February 20, 2015, https://clinicaltrials.gov/ct2/show/NCT02367287 .

17.
mBio ; 13(3): e0010122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536006

RESUMO

Antimicrobial resistance (AMR) represents a significant source of morbidity and mortality worldwide, with expectations that AMR-associated consequences will continue to worsen throughout the coming decades. Since resistance to antibiotics is encoded in the microbiome, interventions aimed at altering the taxonomic composition of the gut might allow us to prophylactically engineer microbiomes that harbor fewer antibiotic resistant genes (ARGs). Diet is one method of intervention, and yet little is known about the association between diet and antimicrobial resistance. To address this knowledge gap, we examined diet using the food frequency questionnaire (FFQ; habitual diet) and 24-h dietary recalls (Automated Self-Administered 24-h [ASA24®] tool) coupled with an analysis of the microbiome using shotgun metagenome sequencing in 290 healthy adult participants of the United States Department of Agriculture (USDA) Nutritional Phenotyping Study. We found that aminoglycosides were the most abundant and prevalent mechanism of AMR in these healthy adults and that aminoglycoside-O-phosphotransferases (aph3-dprime) correlated negatively with total calories and soluble fiber intake. Individuals in the lowest quartile of ARGs (low-ARG) consumed significantly more fiber in their diets than medium- and high-ARG individuals, which was concomitant with increased abundances of obligate anaerobes, especially from the family Clostridiaceae, in their gut microbiota. Finally, we applied machine learning to examine 387 dietary, physiological, and lifestyle features for associations with antimicrobial resistance, finding that increased phylogenetic diversity of diet was associated with low-ARG individuals. These data suggest diet may be a potential method for reducing the burden of AMR. IMPORTANCE Antimicrobial resistance (AMR) represents a considerable burden to health care systems, with the public health community largely in consensus that AMR will be a major cause of death worldwide in the coming decades. Humans carry antibiotic resistance in the microbes that live in and on us, collectively known as the human microbiome. Diet is a powerful method for shaping the human gut microbiome and may be a tractable method for lessening antibiotic resistance, and yet little is known about the relationship between diet and AMR. We examined this relationship in healthy individuals who contained various abundances of antibiotic resistance genes and found that individuals who consumed diverse diets that were high in fiber and low in animal protein had fewer antibiotic resistance genes. Dietary interventions may be useful for lessening the burden of antimicrobial resistance and might ultimately motivate dietary guidelines which will consider how nutrition can reduce the impact of infectious disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Dieta , Fibras na Dieta , Farmacorresistência Bacteriana/genética , Humanos , Filogenia
18.
Front Nutr ; 9: 877696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634390

RESUMO

The use of meal challenge tests to assess postprandial responses in carbohydrate and fat metabolism is well established in clinical nutrition research. However, challenge meal compositions and protocols remain a variable. Here, we validated a mixed macronutrient tolerance test (MMTT), containing 56-g palm oil, 59-g sucrose, and 26-g egg white protein for the parallel determination of insulin sensitivity and postprandial triglyceridemia in clinically healthy subjects. The MMTT was administered in two study populations. In one, women with overweight/obese BMIs (n = 43) involved in an 8-week dietary intervention were administered oral glucose tolerance tests (OGTTs) and MMTTs within 2 days of each other after 0, 2, and 8 weeks of the dietary intervention. In the other, 340 men and women between 18 and 64 years of age, with BMI from 18-40 kg/m2, completed the MMTT as part of a broad nutritional phenotyping effort. Postprandial blood collected at 0, 0.5, 3, and 6 h was used to measure glucose, insulin, and clinical lipid panels. The MMTT postprandial insulin-dependent glucose disposal was evaluated by using the Matsuda Index algorithm and the 0- and 3 h blood insulin and glucose measures. The resulting MMTT insulin sensitivity index (ISIMMTT) was strongly correlated (r = 0.77, p < 0.001) with the OGTT-dependent 2 h composite Matsuda index (ISIComposite), being related by the following equation: Log (ISIComposite) = [0.8751 x Log(ISIMMTT)] -0.2115. An area under the triglyceride excursion curve >11.15 mg/mL h-1 calculated from the 0, 3, and 6 h blood draws established mild-to-moderate triglyceridemia in agreement with ∼20% greater prevalence of hypertriglyceridemia than fasting indications. We also demonstrated that the product of the 0 to 3 h and 3 to 6 h triglyceride rate of change as a function of the triglyceride incremental area under the curve optimally stratified subjects by postprandial response patterns. Notably, ∼2% of the population showed minimal triglyceride appearance by 6 h, while ∼25% had increasing triglycerides through 6 h. Ultimately, using three blood draws, the MMTT allowed for the simultaneous determination of insulin sensitivity and postprandial triglyceridemia in individuals without clinically diagnosed disease. Clinical Trial Registration: [https://clinicaltrials.gov/], identifier [NCT02298725; NCT02367287].

19.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405993

RESUMO

TMAO is elevated in individuals with cardiometabolic diseases, but it is unknown whether the metabolite is a biomarker of concern in healthy individuals. We conducted a cross-sectional study in metabolically healthy adults aged 18-66 years with BMI 18-44 kg/m2 and assessed the relationship between TMAO and diet, the fecal microbiome, and cardiometabolic risk factors. TMAO was measured in fasted plasma samples by liquid chromatography mass spectrometry. The fecal microbiome was assessed by 16S ribosomal RNA sequencing and recent food intake was captured by multiple ASA24 dietary recalls. Endothelial function was assessed via EndoPAT. Descriptive statistics were computed by fasting plasma TMAO tertiles and evaluated by ANOVA and Tukey's post-hoc test. Multiple linear regression was used to assess the relationship between plasma TMAO and dietary food intake and metabolic health parameters. TMAO concentrations were not associated with average intake of animal protein foods, fruits, vegetables, dairy, or grains. TMAO was related to the fecal microbiome and the genera Butyribrio, Roseburia, Coprobaciullus, and Catenibacterium were enriched in individuals in the lowest versus the highest TMAO tertile. TMAO was positively associated with α-diversity and compositional differences were identified between groups. TMAO was not associated with classic cardiovascular risk factors in the healthy cohort. Similarly, endothelial function was not related to fasting TMAO, whereas the inflammatory marker TNF-α was significantly associated. Fasting plasma TMAO may not be a metabolite of concern in generally healthy adults unmedicated for chronic disease. Prospective studies in healthy individuals are necessary.


Assuntos
Metilaminas , Microbiota , Animais , Biomarcadores , Estudos Transversais , Dieta , Humanos , Estudos Prospectivos , Estados Unidos
20.
Nutrients ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406036

RESUMO

Bifidobacterium species are beneficial and dominant members of the breastfed infant gut microbiome; however, their health benefits are partially species-dependent. Here, we characterize the species and subspecies of Bifidobacterium in breastfed infants around the world to consider the potential impact of a historic dietary shift on the disappearance of B. longum subsp. infantis in some populations. Across populations, three distinct patterns of Bifidobacterium colonization emerged: (1) The dominance of Bifidobacterium longum subspecies infantis, (2) prevalent Bifidobacterium of multiple species, and (3) the frequent absence of any Bifidobacterium. These patterns appear related to a country's history of breastfeeding, with infants in countries with historically high rates of long-duration breastfeeding more likely to be colonized by B. longum subspecies infantis compared with infants in countries with histories of shorter-duration breastfeeding. In addition, the timing of infant colonization with B. longum subsp. infantis is consistent with horizontal transmission of this subspecies, rather than the vertical transmission previously reported for other Bifidobacterium species. These findings highlight the need to consider historical and cultural influences on the prevalence of gut commensals and the need to understand epidemiological transmission patterns of Bifidobacterium and other major commensals.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Bifidobacterium , Aleitamento Materno , Estudos Transversais , Feminino , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...